参考文献:(上下滑动可浏览)
1.hausfather zeke, kate marvel, gavin a. schmidt, john w. nielsen-gammon & mark zelinka, 2022. climate simulations: recognize the ‘hot model’ problem. nature,605, 26-29.
2.voosen paul, 2022: “hot” climate models exaggerate earth impacts. science, 376 (6594), doi: 10.1126/science.adc9453
3.ipcc, 2021: summary for policymakers. in: climate change 2021: the physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change [masson-delmotte, v., p. zhai, a. pirani, s.l. connors, c. péan, s. berger, n. caud, y. chen, l. goldfarb, m.i. gomis, m. huang, k. leitzell, e. lonnoy, j.b.r. matthews, t.k. maycock, t. waterfield, o. yelekçi, r. yu, and b. zhou (eds.)]. cambridge university press, cambridge, united kingdom and new york, ny, usa, pp. 3−32, doi:10.1017/9781009157896.001.
4.forster, p., t. storelvmo, k. armour, w. collins, j.-l. dufresne, d. frame, d.j. lunt, t. mauritsen, m.d. palmer, m. watanabe, m. wild, and h. zhang: 2021, the earth’s energy budget, climate feedbacks, and climate sensitivity. in climate change 2021: the physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change [masson-delmotte, v., p. zhai, a. pirani, s.l. connors, c. péan, s. berger, n. caud, y. chen, l. goldfarb, m.i. gomis, m. huang, k. leitzell, e. lonnoy, j.b.r. matthews, t.k. maycock, t. waterfield, o. yelekçi, r. yu, and b. zhou (eds.)]. cambridge university press. in press.
5.原图见ipcc ar6,修订版见:周天军, 张文霞, 陈德亮, 张学斌, 李超, 左萌, 陈晓龙, 2022: 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学. 中国科学: 地球科学, 52(4): 579–594.
6.美国推动气候模拟国家战略委员会,2014.推动气候模拟的美国国家战略,气象出版社,1-307(周天军,邹立维等译)
7.王斌,周天军,俞永强,2008:地球系统模式发展展望. 气象学报,66(6):857-869
8.周天军, 张文霞, 陈德亮, 张学斌, 李超, 左萌, 陈晓龙, 2022: 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学. 中国科学: 地球科学, 52(4): 579–594.
9.周天军, 陈梓明, 陈晓龙, 左萌, 江洁, 胡帅,2021: ipcc ar6报告解读:未来的全球气候--基于情景的预估和近期信息. 气候变化研究进展, 2021, 17(6): 652-663.
10.原图见ipcc ar5,修订版见:周天军, 张文霞, 陈德亮, 张学斌, 李超, 左萌, 陈晓龙, 2022: 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学. 中国科学: 地球科学, 52(4): 579–594.
11.zhou, t. j., z. m. chen, l. w. zou, et al., 2020: development of climate and earth system models in china: past achievements and new cmip6 results. j. meteor. res., 34(1), 1–19.
12.meehl, g. a., c. a. senior, v. eyring, g. flato, j.-f. lamarque, r. j. stouffer, k. e. taylor, m. schlund, 2020: context for interpreting equilibrium climate sensitivity and transient climate response from the cmip6 earth system models. sci. adv., 6, eaba1981.
13.zelinka, m. d., myers, t. a., mccoy, d. t., po-chedley, s., caldwell, p. m., ceppi, p., et al., 2020: causes of higher climate sensitivity in cmip6 models. geophys. res. lett., 47, e2019gl085782.
14.cox, p., huntingford, c. & williamson, m. 2018: emergent constraint on equilibrium climate sensitivity from global temperature variability. nature 553, 319–322.
15.chen, x., zhou, t., wu, p. et al., 2020: emergent constraints on future projections of the western north pacific subtropical high. nature communications,11, 2802.
16.chen, ziming, tianjun zhou., xiaolong chen, wenxia zhang, lixia zhang, mingna wu, liwei zou. 2022. observationally constrained projection of afro-asian monsoon precipitation. nature communications. doi: 10.1038/s41467-022-30106-z
17.周天军,邹立维,陈晓龙. 2019. 第六次国际耦合模式比较计划(cmip6)评述[j]. 气候变化研究进展, 2019, 15(5): 445-456.
18.周天军, 陈晓龙, 2022: 《巴黎协定》温控目标下未来碳排放空间的准确估算问题辨析. 中国科学院院刊, 37(2): 216-229.