引文
[1] boixo, s., et. al., characterizing quantum supremacy in near-termdevices. nature physics, 14(6), 595 (2018)..[2]bremner, m. j., jozsa, r., & shepherd, d. j. classical simulation ofcommuting quantum computations implies collapse of the polynomial hierarchy.proceedings of the royal society a: mathematical, physical and engineeringsciences, 467(2126), 459-472 (2010)..[3] aaronson, s., & arkhipov, a. the computational complexity of linearoptics. in proceedings of the forty-third annual acm symposium on theory ofcomputing (pp. 333-342). acm (2011, june)..[4] bouland, a., fefferman, b., nirkhe, c., & vazirani, u. on thecomplexity and verification of quantum random circuit sampling. nature physics,15(2), 159 (2019)..[5] aaronson, s., & chen, l. complexity-theoretic foundations ofquantum supremacy experiments. arxiv preprint arxiv:1612.05903 (2016).[6] chen, m. et. al. quantum teleportation-inspired algorithm for samplinglarge random quantum circuits, arxiv:1901.05003 (2019).[7] wang, h. et. al. boson sampling with 20 input photons in 60-modeinterferometers at 1014 state spaces, arxiv:1910.09930 (2019).[8] ahmed omran, et al, generation and manipulation of schrodinger catstates in rydberg atom arrays. science, 365(6453), 570-574 (2019).[9] wang, x. l. et. al. 18-qubit entanglement with six photons’ threedegrees of freedom. physical review letters, 120(26), 260502 (2018).[10]gong, m., et. al. genuine12-qubit entanglement on a superconducting quantum processor. physical reviewletters, 122(11), 110501 (2019).[11] yan, z. et. al., strongly correlated quantum walks with a 12-qubitsuperconducting processor. science, 364(6442), 753-756 (2019).[12] ye, y., et. al., propagation and localization of collectiveexcitations on a 24-qubit superconducting processor. physical review letters,123(5), 050502 (2019).[13] song c., et. al., generation of multicomponent atomic schrödinger catstates of up to 20 qubits., science, 365(6453):574–577, (2019).